Course Content
Jkbose previous year question paper 2024 set x,y, z : Maths
JKBOSE Class 12 Previous Year Question Papers: To enhance their preparation for the JKBOSE 12th exams, students are advised to solve as many previous year question papers as possible. This practice is essential, as it helps them understand the exam format and enhances conceptual clarity.
0/4
Jkbose previous year question paper 2024 SET X, Y, Z Maths
About Lesson

JKBOSE 2024 MATHS PAPER SET-X

{B-7-X}

ROLLNo.

[Total No. of Questions:31]
[Total No. of Printed Pages : 8]
$$12^{\text {th }}$$ ARM(SZ)JKUT2024

{1107-X}

MATHEMATICS
[Time : 3 Hours]
[Maximum Marks : 80]
SECTION-A
(OBJECTIVE TYPE QUESTIONS
MULTIPLE CHOICE QUESTIONS) 1 each

1. In determinant
$$
\left|\begin{array}{rr}
3 & 6 \\
-2 & 5
\end{array}\right|
$$
cofactor of -2 is:
(A) 6
(B) 3
(C) 5
(D) -6
2. For a square matrix $$A \cdot A({adj} A)=({adj} A) A=$$

 

12ARM(SZ)IKUT2024-1107-x

B-7-X

3. Order of differential equation :
$$
\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2}=\frac{d^{2} y}{d x^{2}}
$$
is:
(A) 3
(B) 2
(C) 1
(D) 4
4. Derivative of $$e^{\log \sin x}$$ is :
(A) $$\sin x$$
(B) $$\cos x$$
(C) $$\sec x$$
(D) $$\tan x$$
5. Number of points of discontinuity of the function:
$$
f(x)=\frac{1}{x-5}, x \neq 5
$$
is:
(A) 1
(B) 2
(C) 3
(D) 5
6. $$\int x e^{2} d x$$ is equal to $$\frac{e^{x^{2}}}{x}+c$$.
7. The function $$f(x)=3 x+5$$ is increasing for……..
8. Direction cosines of $$x$$-axis are :
(A) (1,0,0)
(B) (0,1,0)
(C) (0,0,1)
(D) ($$0,0,0$$)
9. Magnitude of Vector $$\hat{i}+2 \hat{j}+3 \hat{k}$$ is :
(A) $$\frac{1}{\sqrt{14}}$$
(D) $$\sqrt{14}$$
(C) 1
(D) 10
10. Define objective function.

12ARM(SZ)JKUT2024-1107-X

{section-B (VERY SHORT ANSWER TYPE QUESTIONS) 2 each}
Jkboseoldpapers.com

11. Check the injectivity and subjectivity of the function $$\quad f:=\rightarrow$$ : given by $$f(x)=x^{2}$$.
12. Find the principal value of
$$
\sin ^{-1}\left(-\frac{1}{2}\right)
$$
13. Prove that the logarithmic function is strictly increasing on $$(0, \infty)$$.
14. Find the projection of the vector $$\hat{i}+3 \hat{j}+7 \hat{k}$$ on the vector $$7 \hat{i}-\hat{j}+8 \hat{k}$$.
15. Find a unit vector perpendicular to each of the vector $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$, where $$\vec{a}=3 \hat{i}+2 \hat{j}+2 \hat{k}$$ and $$\vec{b}=\hat{i}+2 \hat{j}-2 \hat{k}$$.
16. Find:
$$
\int \frac{(\log x)^{2}}{x} d x
$$
17. Evaluate:
$$
\int_{0}^{1} \frac{d x}{\sqrt{1-x^{2}}}
$$

12ARM(SZ)JKUT2024-1107-X
B-7-X
18.
$$
P(A)=\frac{3}{5}
$$
find $$P(A \cap B)$$ if $$A$$ and $$B$$ are independent events.
$$
\begin{aligned}
& P(B)=\frac{1}{5} \\
& B \text { are independent events. }
\end{aligned}
$$
19. Evaluate $$P(A \cup B)$$ if $$2 \underline{P}(A)=P(B)=\frac{5}{13}$$ and $$P(A / B)=\frac{2}{5}$$.
20. Show that the matrix :
$$
A=\left[\begin{array}{rrr}
1 & -1 & 5 \\
-1 & 2 & 1 \\
5 & 1 & 3
\end{array}\right]
$$
is a symmetric matrix.

(SHORT ANSWER TYPE QUESTIONS) 4 each
Jkboseoldpapers.com

21. Find the general solution of the dierential equation:
$$
x \log x \frac{d y}{d x}+y=\frac{2}{x} \log x
$$
22. Evaluate:
$$
\int_{0}^{\pi / 2} \frac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}} d x
$$
23. If
$$
x=\sqrt{a^{\sin ^{-t \prime}}}, y=\sqrt{a^{\cos ^{-t \prime}}}
$$
show that:
$$
\frac{d y}{d x}=-\frac{y}{x}
$$
24. Find the shortest distance between the lines:
$$
\vec{r}=(\hat{i}+2 \hat{j}+\hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k})
$$
and
$$
\vec{r}=(2 \hat{i}-\hat{j}-\hat{k})+\mu(2 \hat{i}+\hat{j}+2 \hat{k})
$$
25. If
$$
\vec{a}=2 \hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=-\hat{i}+2 \hat{j}+\hat{k}
$$
and
$$
\vec{c}=3 \hat{i}+\hat{j}
$$
are such that:
$$
\vec{a}+\lambda \vec{b}
$$
is perpendicular to $$\vec{c}$$. then find the value of $$\lambda$$.

Jkboseoldpapers.com
26. Solvethe linearprogramming problem graphically

Minimize $$:=-3 x+4 y$$
subject to:
$$
\begin{gathered}
x+2 y \leq 8 \\
3 x+2 y \leq 12 \\
x \geq 0, y \geq 0
\end{gathered}
$$
27. Show that the relation $$R$$ in the set $$\mathbf{Z}$$ of integers given by $$R=\{(a, b): 2$$ divides $$a-b\}$$ is an equivalence relation.
28. A bag contains 4 red and 4 black balls. another bag contains 2 red and 6 black balls. One of the two bags is selected at random and a hall is drawn from the bag which is found to be red. Find the probability that the ball is drawn from the first bag.

{SECTION-D}
(LONG ANSWER TYPE QUESTIONS) 6 each
29. If :
$$
A=\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 0 & -2 \\
1 & 0 & 3
\end{array}\right]
$$
verify $$A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$$.
12ARM(SZ)JKUT2024-1107-X

Or

Let :
$$
A=\left[\begin{array}{ll}
3 & 7 \\
2 & 5
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
6 & 8 \\
7 & 9
\end{array}\right]
$$
verify $$(A B)^{-1}=B^{-1} \cdot A^{-1}$$.

30. Evaluate: Jkboseoldpapers.com $$
\int_{-1}^{1} 5 x^{4} \sqrt{x^{5}+1} d x
$$}

Or Evaluate:
$$
\int \frac{(3 x-1) d x}{(x-1)(x-2)(x-3)}
$$
31. If $$y=A e^{m x}+B e^{n x}$$, show that:
$$
\frac{d^{2} y}{d x^{2}}-(m+n) \frac{d y}{d x}+m n y=0
$$

Or

Differentiate w.r.t. $$x$$ :
$$
(\log x)^{x}+x^{\log x}
$$

Join the conversation