SUBJECT: MATHEMATICS
CLASS 10
TIME: 3 HOURS
MAX MARKS: 8 0
General Instructions:
i. This question paper comprises of four sections A, B, C \& D and carries 40 questions of 80 marks. All questions are compulsory.
ii. Section-A-Q No. 1 to Q 20 comprises of 20 questions of one mark each.
iii. Section-B-Q No. 21 to Q 26 comprises of 6 questions of two marks each.
iv. Section-C-Q No. 27 to Q 34 comprises of 8 questions of three markseach.
v. Section-D-Q No. 35 to Q 40 comprises of 6 questions of four marks each.
vi. There is no overall choice in the question paper. However, choice has been provided in 2 questions of one mark, 2 questions of two marks, 2 questions of three marks and 4 questions of four marks. Student has toattempt only one of the choice in such questions.
Jkbose previous year question paper 2024 set X Class 10
$$A-3-X$$
Roll No.
[Total No. of Questions : 40]
[Total No. of Printed Pages : 15]
$$10^{\text {th }}$$ ARM(SZ)JKUT2024 1003-X
MATHEMATICS
[Time: 3 Hours]
Section-A 1.marks x 20.Q = 20
(Maximum Marks : 80)
1.Which of the following numbers is an irrational number?
(A) 0.101
(B) 0.202202220……….
(C) 0.1011
(D) None of these
View Answer
ANSWER:B
EXPLANATION:Number Systems Recall’s = 0.20220222022220… from the previous section. Notice that it is non- terminating and non-recurring. Therefore, from the property above, it is irrational number.
A-3-X
2. Sum of zeroes of the polynomial $$3 x^{2}-8 x+6$$ is :
(A) -4
(B) 3
(C) 4
(D) None of these
View Answer
ANSWER:D
EXPLANATION:The sum of the zeroes of the polynomial $$3 x^2-8 x+6$$.
Basic Concept
– The sum of the zeroes of a quadratic polynomial $$a x^2+b x+c$$ is $$-\frac{b}{a}$$
How to solve
Identify the coefficients of the polynomial and use the formula for the sum of the zeroes.
Step 1
Identify the coefficients of the polynomial.
$$
\begin{aligned}
a & =3 \\
b & =-8 \\
c & =6
\end{aligned}
$$
Step 2
Use the formula for the sum of the zeroes is $$-\frac{b}{a}$$
Solution
The sum of the zeroes of the polynomial $$3 x^2-8 x+6$$ is $$\frac{8}{3}$$.
3. The pair of linear equations $$2 x+3 y-9=0$$ and $$4 x+6 y-18=0$$ are:
(A) Coincident
(B) Parallel
(C) Intersecting
(D) None of these
View Answer
ANSWER:A
EXPLANATION:The relationship between the pair of linear equations $$2 x+3 y-9=0$$ and $$4 x+6 y-18=0$$.
How to solve
Compare the coefficients of the two equations to determine their relationship.
Step 1
Compare the coefficients of the two equations.
$$
\begin{aligned}
& \frac{a_1}{a_2}=\frac{2}{4}=\frac{1}{2} \\
& \frac{b_1}{b_2}=\frac{3}{6}=\frac{1}{2} \\
& \frac{c_1}{c_2}=\frac{-9}{-18}=\frac{1}{2}
\end{aligned}
$$
Step 2
Since $$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$$, the two equations represent the same line.
Step 3
Therefore, the pair of linear equations are coincident and consistent.
Solution
The pair of linear equations $$2 x+3 y-9=0$$ and $$4 x+6 y-18=0$$ are coincident and consistent.
10thARM(SZ)JKUT2024-1003-X
A-3-X
4. $$35^{\text {th }}$$ term or the A.P. : 21, 18, 15, …….. is :
(A) -18
(B) -71
(C) -81
(D) None of these
View Answer
ANSWER:C
EXPLANATION:$$\begin{aligned}
& 21,18,15,………. \\
& a=21 \\
& d=18-21=-3 \\
& n=35 \\a_n
& \Rightarrow a + (n-1)d\\
& \Rightarrow 21+(n-1) d \\
& \Rightarrow 21+(35-1)-3 \\
& \Rightarrow 21 + (34)(-3)\\
& \Rightarrow21-102 \\
& \Rightarrow-81
\end{aligned}$$
5. cot $$30^{\circ}$$ is equal to :
(A) $$\sec 30^{\circ}$$
(B) $$\cos 60^{\circ}$$
(C) $$\tan 60^{\circ}$$
(D) None of these
View Answer
ANSWER:C
EXPLANATION:cot $$30^{\circ}$$ = √3 = $$\tan 60^{\circ}$$
$$10^{\text {th }}ARM(SZ)JKUT2024-1003-X$$
Turn Over
A-3-X
6. The distance of a point, from the $$x$$-axis is called its :
(A) Abscissa
(B) Ordinate
(C) Coordinate
(D) None of these
View Answer
ANSWER:B
EXPLANATION:The distance of a point from the x-axis is called its y-coordinate or ordinate.
7. H.C.F. of 7 and 28 is :
(A) 4
(B) 28
(C) 7
(D) None of these
View Answer
ANSWER:C
EXPLANATION: $$ \begin{gathered}
7=7 \times 1 \\
28=7 \times 2 \times2\\
H C F(7,28)=7 \
\end{gathered}$$
10MRM(SZ)KKUT2024-1003-X
A-3-X
8.The probability that it will rain tomorrow is 0.85 . What is the probability that it will not rain tomorrow?
(A) 0.25
(B) 0.15
(C) 0.05
(D) None of these
View Answer
ANSWER:B
EXPLANATION:Let the probability of raining tomorrow be $$p(A)$$ and the probability of not raining be $$p(\bar{A})$$
We know that,
$$
p(A)+p(\bar{A})=1
$$
Therefore,
$$
\begin{aligned}
& 0.85+p(\bar{A})=1 \\
& p(\bar{A})=1-0.85=0.15
\end{aligned}
$$
The probability that it will not rain tomorrow is 0.15 .
9. Volume of cone is :
(A) $$\pi r^{2} h$$
(B) $$\frac{1}{3} \pi r^{2} h$$
(C) $$3 \pi r^{2} h$$
(D) None of these
View Answer
ANSWER:B
EXPLANATION:$$\frac{1}{3} \pi r^{2} h$$
10. Discriminant of the quadratic equation $$x^{2}+5 x+5=0$$ is :
(A) 25
(B) -5
(C) 5
(D) None of these
View Answer
ANSWER:C
EXPLANATION:We are given the quadratic equation of the form $$x^2+5 x+5=0$$.
Compare it with the standard form of the quadratic equation $$a x^2+b x+c=0$$, we get the values of $$\mathrm{a}, \mathrm{b}$$ and c given by
$$
a=1, b=5, c=5
$$
To determine the value of the discriminant we need to substitute the above values of $$a, b$$ and $$c$$ in the formulae of the discriminant given by $$D=b^2-4 a c$$.
We get,
$$
D=5^2-4(1)(5)
$$
Evaluate the square term,
$$
D=25-4(1)(5)
$$
$$
D=25-20
$$
$$
D=5
$$
11. Prime factorization of 5313 is $$3 \times 7 \times 11 \times 23$$. (T̂rue/false)
View Answer
ANSWER:True
EXPLANATION:Prime Factors of 5313 are:
3, 7, 11, 23.
12. The sum of first 100 positive integers is :
(A) 5000
(B) 5050
(C) 5005
(D) None of these
View Answer
ANSWER:B
EXPLANATION:01 Identify the number of terms and the first and last term
we have to find the sum of the first 100 positive integers. So, the number of terms, $$n$$ = 100 . The first term, $$a$$=1 and the last term $$a_n$$ = 100 .
02 Apply the formula for the sum of an arithmetic series
$$
S_n=\frac{n}{2}\left(a+a_n\right)
$$
formula.
03 Substitute the values into the formula
Substitute the values we found in Step 1 into the formula:
$$
S_{100}=\frac{100}{2}(1+100)
$$
04 Simplify the expression
First, add the first term and the last term:
$$
S_{100}=\frac{100}{2}(101)
$$
Then, simplify the fraction:
$$
S_{100}=50(101)
$$
05 Calculate the sum
Finally, multiply the remaining numbers to find the sum of the first 100 positive integers:
$$
S_{100}=5050
$$
So, the sum of the first 100 positive integers is 5050.
$$10^{\text {th }}$$ARM(SZ)JKUT2024-1003-X
A-3-X
14. All circles are (congruent, simillar)
View Answer
ANSWER:similar
EXPLANATION:All circles are similar, but not all circles are congruent
15. Number of tangents that can be drawn from a point outside the circle is $$…………$$
View Answer
ANSWER:two
EXPLANATION: The maximum number of tangents that can be drawn to a circle from a point outside the circle is two
16. Write formula for sum to n terms of an A.P.
View Answer
ANSWER:$$S_n=\frac{n}{2}[2 a+(n-1) d$$
EXPLANATION: $$\text { or } S_n=\frac{n}{2}[a+l] ;[\text { Where } l=[a+(n-1) d]] \text { or } S_n=\frac{n}{2}[2 a+(n-1) d]$$
17. $$x=0, y=2$$ is a solution of equation $$y-2 x=-2$$.(True/False)
View Answer
ANSWER:False
EXPLANATION:y-2x=0
2-2(0)=0
2-0=0
2=0
18. The value of $$\cos \mathrm{A}$$ exceeds 1 .[ True/ False]
View Answer
ANSWER:False
EXPLANATION:the ratio of sine and cosine is always less than 1. So, the value of $$\sin A$$ or $$\cos A$$ never exceeds the value 1.
Or
$$
\sin ^{2} A+\ldots \ldots \ldots \ldots \ldots \ldots \ldots
$$
View Answer
ANSWER:$$Cos^2A=1$$
EXPLANATION:$$Sin^2A+Cos^2A=1$$
$$10^{\text {thMRM}}$$ (SZ JOKUT2024-1003-X)
A-3-X
19. Calculate mean of First 6 prime numbers.
View Answer
ANSWER:6.833
EXPLANATION:sum of first 6 prime number/total number of terms
2+3+5+7+11+13/6=6.833
20. Write the formula for class mark of grouped data.
View Answer
ANSWER:Class Mark = (Upper Class Limit + Lower Class Limit) / 2
EXPLANATION:The formula for calculating the class mark of grouped data is: Class Mark = (Upper Class Limit + Lower Class Limit) / 2
Upper Class Limit: The highest value within a particular class interval.
Lower Class Limit: The lowest value within a particular class interval.
Example:
If a class interval is “20 – 30”, the class mark would be calculated as:
(30 + 20) / 2 = 25
Or
If mean $$=15.6$$, median $$=15.73$$, then mode $$=$$
View Answer
ANSWER:mode = 15.99
EXPLANATION:Concept :
The relationship connecting three measures of central tendency is given by
3 × Median = 2 × Mean + Mode
Solution :
Step 1
Write down mean and median
Here it is given that ,
Mean = 15.6
Median = 15.73
Step 2
Calculate mode of the grouped frequency distribution
3 × Median = 2 × Mean + Mode
⇒ ( 3 × 15.73 ) = ( 2 × 15.6 ) + Mode
⇒ 47.19 = 31.2 + Mode
⇒ Mode = 47.19 – 31.2
⇒ Mode = 15.99
Hence mode = 15.99
Section-B 2.marks x 6.Q = 12
21. Solve the pair of linear equations $$3 x-5 y-4=0$$ and $$9 x=2 y+7$$ by
substitution method.
View Answer
ANSWER:
EXPLANATION:Given,
$$
\begin{aligned}
& 3 x-5 y-4=0\\
& 2 y+7=9 x\\
=>& 3 x-5 y=4(I) \\
=>& 2 y+7=9 x(II)
\end{aligned}
$$
$$\qquad$$
$$\qquad$$
From (ii), $$x=\frac{2 y+7}{9}$$ $$\qquad (III)$$
substitute $$x=\frac{2 y+7}{9}$$ in (i), then
$$
\begin{aligned}
& 3\left(\frac{2 y+7}{9}\right)-5 y=4 \\
& \Rightarrow \frac{2 y+7}{3}-5 y=4 \\
& \Rightarrow \frac{2 y+7-15 y}{3}=4 \\
& \Rightarrow 7-13 y=12 \\
& \Rightarrow y=-\frac{5}{13}
\end{aligned}
$$
Put $$y=-\frac{5}{13}$$ in (iii), then
$$
\begin{aligned}
& x=\frac{2\left(-\frac{5}{13}\right)+7}{9}=\frac{-10+91}{9 \times 13} \\
& \Rightarrow x=\frac{9}{13}
\end{aligned}
$$
Hence, $$x=\frac{9}{13}$$ and $$y=-\frac{5}{13}$$ is the solution for the given pair of linear equations.
22. Find the roots of the quadratic equation $$2 x^{2}+x-6=0$$ by factorisation.
View Answer
ANSWER:
EXPLANATION:$$
\begin{aligned}
& 2 x^2+x-6=0 \\
& \Rightarrow 2 x^2+4 x-3 x-6=0 \\
& \Rightarrow 2 x(x+2)-3(x+2)=0 \\
& \Rightarrow(x+2)(2 x-3)=0 \\
& \Rightarrow x+2=0 \text { or } 2 x-3=0 \\
& \Rightarrow x=-2 \text { or } x=\frac{3}{2}
\end{aligned}
$$
The roots of the given equation are $$-2, \frac{3}{2}$$.
23. Given $$\sec \theta=\frac{13}{12}$$. calculate all other trigonometric ratios.
View Answer
ANSWER
EXPLANATION:Solution
Step 1: Given trigonometric ratio is:
$$\sec \theta=\frac{13}{12}$$,
where, $$\sec \theta=\frac{\text { Hypotenuse }}{\text { Base }}$$
Step 2: Find the perpendicular, using the
Pythagoras theorem.
According to Pythagoras theorem,
$$(\text { Hypotenuse })^2=(\text { Perpendicular })^2+(\text { Base })^2$$
Put Hypotenuse $$=13$$ and Base $$=12$$ in the equation.
$$13^2=$$ Perpendicular $$^2+12^2$$
Perpendicular $${ }^2+144=169$$
Perpendicular $${ }^2+144-144=169-144$$
Perpendicular $${ }^2=25$$
Perpendicular $$=\sqrt{25}$$
Perpendicular $$=5$$
Step 3: Find other trigonometric ratios.
$$
\begin{aligned}
& \sin (\theta)=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{5}{13} \\
& \cos (\theta)=\frac{\text { Base }}{\text { Hypotenuse }}=\frac{12}{13} \\
& \tan (\theta)=\frac{\text { Perpendicular }}{\text { Base }}=\frac{5}{12} \\
& \operatorname{cosec}(\theta)=\frac{\text { Hypotenuse }}{\text { Perpendicular }}=\frac{13}{5} \\
& \cot (\theta)=\frac{\text { Base }}{\text { Perpendicular }}=\frac{12}{5}
\end{aligned}
$$
So, when the value of $$\sec (\theta)=\frac{13}{12}$$, the values of other trigonometric ratios are $$\sin (\theta)=\frac{5}{13}, \cos (\theta)=\frac{12}{13}, \tan (\theta)=\frac{5}{12}, \cos e$$ $$c(\theta)=\frac{13}{5}, \cot (\theta)=\frac{12}{5}$$
$$10^{\text {th }}$$ ARM(SZ)JKUT2024-1003-Z
A-3-Z
24. Find volume of sphere of radius 3 cm .
View Answer
ANSWER:
EXPLANATION:Solution
Radius $$=r=3 \mathrm{~cm}$$
Volume of the sphere $$=\frac{4}{3} \pi r^3=\frac{4}{3} \times \frac{22}{7} \times 3^3=113.14 \mathrm{~cm}^3$$
Or
Calculate the curved surface area of cylinder of radius 2 cm and height 7 cm.
View Answer
ANSWER:
EXPLANATION:C.S.A= 2πrh
= 2 x 22/7 x 2 x 7
= 2 x 22 x 2
= 88 Cm.
25. Find the values of $$y$$ for which the distance between the points $$P(2,-3)$$ and $$Q(10, y)$$ is 10 units.
View Answer
ANSWER:
EXPLANATION:Solution
Evaluate the value of $$y$$
The distance formula is
$$
d=\sqrt{\left(\mathrm{x}_2-\mathrm{x}_1\right)^2+\left(\mathrm{y}_2-\mathrm{y}_1\right)^2}
$$
.
Here,
$$
\begin{aligned}
& d=10 \text { units } \\
& \left(x_1, x_2\right)=(2,10) \text { and }\left(y_1, y_2\right)=(-3, y) .
\end{aligned}
$$
Substituting in the formula,
$$
\begin{aligned}
& \Rightarrow 10=\sqrt{(10-2)^2+(y+3)^2} \\
& \Rightarrow 10=\sqrt{64+y^2+9+6 y}\left[(\mathbf{a}+\mathbf{b})^2=\mathbf{a}^2+\mathbf{2 a b}+\mathbf{b}^2\right]
\end{aligned}
$$
Now, take square roots on both the sides
$$
\begin{aligned}
& \Rightarrow 100=73+6 y+y^2 \\
& \Rightarrow y^2+6 y-27=0 \\
& \Rightarrow y^2+9 y-3 y-27=0 \\
& \Rightarrow y(y+9)-3(y+9)=0 \\
& \Rightarrow(y+9)(y-3)=0 \\
& \Rightarrow y=3,-9
\end{aligned}
$$
Hence, the value of $$y$$ is 3 or -9 .
Or
Check whether $$(5,-2),(6,4)$$ and $$(7,-2)$$ are the vertices of an isosceles triangle.
View Answer
ANSWER:
EXPLANATION:Let the points $$(5,-2),(6,4)$$, and $$(7,-2)$$ are representing the vertices $$A, B$$, and C of the given triangle respectively.
$$
\begin{aligned}
\ \mathrm{AB}=\sqrt{(5-6)^2+(-2-4)^2}\\=\sqrt{(-1)^2+(-6)^2}\\=\sqrt{1+36}=\sqrt{37} \\
\mathrm{BC}=\sqrt{(6-7)^2+(4-(-2))^2}\\=\sqrt{(-1)^2+(6)^2}\\=\sqrt{1+36}=\sqrt{37} \\
\ \mathrm{CA}=\sqrt{(5-7)^2+(-2-(-2))^2}\\=\sqrt{(-2)^2+0^2}=2
\end{aligned}
$$
Therefore, $$\mathrm{AB}=\mathrm{BC}$$
As two sides are equal in length, therefore, ABCis an isosceles triangle.
26. Find a quadratic polynomial, the sum and product of whose zeroes are $$\sqrt{2}$$ and $$\frac{1}{3}$$. respectively.
View Answer
ANSWER:
EXPLANATION:Let the polynomial be $$a x^2+b x+c$$, and its zeroes be $$a$$ and $$\beta$$.
$$
\begin{aligned}
& \alpha+\beta=\sqrt{2} \\
& \alpha \beta=\frac{1}{3}=\frac{c}{a}
\end{aligned}
$$
$$
\begin{aligned}
& a+\beta=\frac{3 \sqrt{2}}{3}=\frac{-b}{a} \\
& a=3, b=-3 \sqrt{2}, c=1
\end{aligned}
$$
Quadratic polynomial is $$3 x^2-3 \sqrt{2} x+1$$.
A-3-Z
Section-C. 3.marks x 8Q = 24
27. Find the coordinates of the points which divide the linesegment joining $$A(-2,2)$$ and $$B(2,8)$$ into four equal parts.
View Answer
ANSWER:
EXPLANATION:From the figure, it can be observed that points $$X, Y, Z$$ are dividing the line segment in a ratio $$1: 3,1: 1,3: 1$$ respectively.
Using Sectional Formula, we get,
Coordinates of $$\mathrm{X}=\frac{1 \times 2+3 \times(-2)}{1+3}, \frac{1 \times 8+3 \times 2}{1+3}$$ $$=\left(-1, \frac{7}{2}\right)$$
Coordinates of $$\left.Y=\frac{2-2}{2}, \frac{2+8}{2}=(0,5)\right)$$
Coordinates of $$Z=\left(\frac{3 \times 2+1 \times(-2)}{1+3}, \frac{3 \times 8+1 \times 2}{1+3}\right)$$
$$
=\left(1, \frac{13}{2}\right)
$$
28. Find the area of a quadrant of a circle whose circumference is 22 cm .
View Answer
ANSWER:
EXPLANATION:Let the radius of the circle be $$r$$.
Circumference $$=22 \mathrm{~cm}$$
$$
\begin{aligned}
& 2 \pi r=22 \\
& 2 \times \frac{22}{7} \times r=22 \\
& r=22 \times \frac{7}{22} \times \frac{1}{2} \\
& =r=\frac{7}{2}
\end{aligned}
$$
Here $$\theta=90^{\circ}$$
Area of the $$\left(\frac{1}{4}\right)^{t h}$$ quadrant of the circle $$=\frac{\theta}{360^{\circ}} \times \pi r^2$$
$$
\begin{aligned}
& =\frac{90^{\circ}}{360^{\circ}} \times \frac{22}{7} \times\left(\frac{7}{2}\right)^2 \mathrm{~cm}^2 \\
& =\frac{1}{4} \times \frac{22}{7} \times \frac{7}{2} \mathrm{~cm}^2 \\
& =\frac{77}{8} \mathrm{~cm}^2
\end{aligned}
$$
29. Prove that the opposite sides of a quadrilateral circumscribing a circle subtend supplementary angles at the centre of the circle.
View Answer
ANSWER:
EXPLANATION:
Step 1: Draw appropriate diagram and use the concept of congruence:
As we know that by theorem the tangents from the external point are equal
In $$\triangle O A P, \triangle O A S$$
So, $$A P=A S$$
$$\Rightarrow O A=O A$$ (It is the common side)
$$\Rightarrow O P=O S$$ (They are the radii of the circle)
So, by $$S S S$$ congruency $$\triangle O A P \cong \triangle O A S$$
Thus, $$\angle P O A=\angle A O S$$
This shows that $$\angle 7=\angle 8$$
In this same manner, the angles which are equal are
$$
\begin{aligned}
& \Rightarrow \angle 4=\angle 3 \\
& \Rightarrow \angle 2=\angle 1 \\
& \Rightarrow \angle 6=\angle 5
\end{aligned}
$$
Step 2: Use the concept of complete angle
On adding these angles we get,
$$
\angle 1+\angle 2+\angle 3+\angle 4+\angle 5+\angle 6+\angle 7+\angle 8=
$$
$$360^{\circ} \quad$$ [Complete angle]
On rearranging,
$$
\begin{aligned}
& (\angle 7+\angle 8)+(\angle 2+\angle 1)+(\angle 4+\angle 3)+(\angle 6+ \\
& \angle 5)=360^{\circ} \\
& \Rightarrow 2 \angle 1+2 \angle 8+2 \angle 5+2 \angle 4=360^{\circ}
\end{aligned}
$$
On taking out 2 as common we get,
$$
\Rightarrow(\angle 1+\angle 8)+(\angle 5+\angle 4)=180^{\circ}
$$
Thus, $$\angle B O C+\angle D O A=180^{\circ}$$
Similarly, $$\angle A O B+\angle D O C=180^{\circ}$$
Hence, the opposite sides of any quadrilateral which is circumscribing a given circle will subtend supplementary angles at the center of the circle.
$$
\mathrm{Or}
$$
Two tangents TP and TQ are drawn to a cricle with centre O from an external point T. Prove that :
$$
\angle \mathrm{PTQ}=2 \angle \mathrm{OPQ}
$$
View Answer
ANSWER:
EXPLANATION:We know that, the lengths of tangents drawn from an external point to a circle are equal.
$$
\begin{aligned}
& \mathrm{TP}=\mathrm{TQ} \\
& \text { In } \triangle \mathrm{TPQ} \\
& \mathrm{TP}=\mathrm{TQ} \\
& \Rightarrow \angle \mathrm{TQP}=\angle \mathrm{TPQ} \ldots \ldots \text { (1) (In a triangle, equal sides ho } \\
& \text { to them) } \\
& \angle \mathrm{TQP}+\angle \mathrm{TPQ}+\angle \mathrm{PTQ}=180^{\circ} \text { (Angle sum property) } \\
& 2 \angle \mathrm{TPQ}+\angle \mathrm{PTQ}=180^{\circ} \text { (Using (1)) } \\
& \Rightarrow \angle \mathrm{PTQ}=180^{\circ}-2 \angle \mathrm{TPQ} \ldots \ldots \text { (1) }
\end{aligned}
$$
We know that, a tangent to a circle is perpendicular to the radius through the point of contact.
OP $$\perp$$ PT
$$
\begin{aligned}
& \angle \mathrm{OPT}=90^{\circ} \\
& \Rightarrow \angle \mathrm{OPQ}+\angle \mathrm{TPQ}=90^{\circ} \\
& \Rightarrow \angle \mathrm{OPQ}=90^{\circ}-\angle \mathrm{TPQ} \\
& \Rightarrow 2 \angle \mathrm{OPQ}=2\left(90^{\circ}-\angle \mathrm{TPQ}\right)=180^{\circ}-2 \angle \\
& \mathrm{TPQ} \ldots \ldots \text { (2) }
\end{aligned}
$$
From (1) and (2), we get
$$
\angle P T Q=2 \angle O P Q
$$
$$10^{\text {th }}$$ ARM(SZ)JKUT2024-1003-Z
A-3-Z
30 E is a point on the side $$A D$$ produced of a parallelogram $$A B C D$$ and BF intersects CD at F. Show that:
$$\triangle \mathrm{ABE} \sim \triangle \mathrm{CFB}$$
View Answer
ANSWER:
EXPLANATION:Let’s draw a parallelogram ABCD as per the given question.If two angles of one triangle are respectively equal to two angles of another triangle, then the two triangles are similar.
This is referred to as the AA similarity criterion for two triangles.
In ΔABE and ΔCFB,
∠BAE = ∠FCB (opposite angles of a parallelogram)
∠AEB = ∠FBC [AE || BC and EB is a transversal, alternate interior angles]
Thus, ΔABE ~ ΔCFB (AA criterion)
31. The diagonals of a quadrilateral ABCD intersect each other at the point $$O$$ such that $$\frac{A O}{B O}=\frac{C O}{D O}$$. Show that $$A B C D$$ is a trapezium.
View Answer
ANSWER:B
EXPLANATION:Step 1. Explaining the diagram.
Let $$A B C D$$ be quadrilateral where $$A C$$ and $$B D$$ intersects each other at $$O$$ such that, $$\frac{A O}{B O}=\frac{C O}{D O}$$
Step 2. Showing $$A B C D$$ is trapezium
Construction-From the point $$O$$, draw a line $$E O$$ touching $$A D$$ at $$E$$ in such a way that,
$$E O\|D C\| A B$$
In $$\triangle D A B, E O \| A B$$
By using Basic Proportionality Theorem
$$
\frac{D E}{E A}=\frac{D O}{O B} .
$$
Also, given,
$$\frac{A O}{B O}=\frac{C O}{D O}$$
$$\Rightarrow \frac{A O}{C O}=\frac{B O}{D O} \quad[$$ applying alternendo]
$$\Rightarrow \frac{C O}{A O}=\frac{D O}{O B} \quad[$$ [applying invertend
$$o]$$
$$
\Rightarrow \frac{D O}{O B}=\frac{C O}{A O} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots(i i)
$$
From equation (i) and (ii),
We have
$$
\frac{D E}{E A}=\frac{C O}{A O}
$$
Therefore, By applying converse of Basic Proportionality Theorem,
$$E O \| D C$$
Also $$E O\|A B \Rightarrow A B\| D C$$.
Hence, quadrilateral $$A B C D$$ is a trapezium with $$A B \| C D$$.
32. Prove that $$6+\sqrt{2}$$ is irrational.
View Answer
ANSWER:
EXPLANATION:Let us assume that $$6+\sqrt{ } 2$$ is a rational number.
So it can be written in the form $$\frac{a}{b}$$
$$
6+\sqrt{ } 2=\frac{a}{b}
$$
Here $$a$$ and $$b$$ are coprime numbers and $$b \neq 0$$
$$
6+\sqrt{ } 2=\frac{a}{b}
$$
By solving the equation we get,
$$
\begin{aligned}
& \Rightarrow \sqrt{ } 2=\frac{a}{b}-6 \\
& \Rightarrow \sqrt{ } 2=\frac{a-6 b}{b}
\end{aligned}
$$
This shows $$\frac{a-6 b}{b}$$ is a rational number.
But we know that $$\sqrt{ } 2$$ is an irrational number, it contradicts our assumption.
Our assumption $$6+\sqrt{ } 2$$ is a rational number is incorrect.
Therefore, $$6+\sqrt{ } 2$$ is an irrational number
Hence, it is proved that $$6+\sqrt{ } 2$$ is an irrational number.
33. An AP consists of 50 terms of which $$3^{\text {rd }}$$ term is 12 and the last term is 106 . Find the $$29^{\text {th }}$$ term.
View Answer
ANSWER:
EXPLANATION:An AP consists of 50 terms and the $$50^{\text {th }}$$ term is equal to 106.
It is also given that $$a_3=12$$
Using formula $$a_n=a+(n-1) d$$ to find $$n^{\text {th }}$$ term of AP, we get
$$
\begin{aligned}
& a_{50}=a+(50-1) d \text { and } \\
& a_3=a+(3-1) d \\
& \Rightarrow 106=a+(50-1) d \\
& \Rightarrow 106=a+49 d \\
& \Rightarrow 12=a+(3-1) d \\
& \Rightarrow 12=a+2 d
\end{aligned}
$$
These are equations consisting of two variables. Let’s solve them using substitution method.
Using equation $$106=a+49 d$$
We get $$a=106-49 d$$
Putting value of a in the equation $$12=\mathrm{a}+2 \mathrm{~d}$$ we get
$$
\begin{aligned}
& 12=106-49 d+2 d \\
& \Rightarrow 47 d=94 \\
& \Rightarrow d=\frac{94}{47}=2
\end{aligned}
$$
Putting value of $$d$$ in the equation, $$a=106-49 d$$ we get
$$
a=106-49(2)=106-98=8
$$
Therefore, First term, $$a=8$$ and Common difference, $$d=2$$
To find $$29^{\text {th }}$$ term we use formula $$a_n=a+(n-1) d$$ which is used to find $$n^{\text {th }}$$ term of AP, we get
$$
a_{29}=8+(29-1) 2=8+56=64
$$
Therefore, $$29^{\text {th }}$$ term of $$A P$$ is equal to 64.
$$
O r
$$
Find the sum of the first 15 multiples of 8.
View Answer
ANSWER:
EXPLANATION:The first 8 multiples of 8 are
$$
8,16,24,32,40,48,56,64 \ldots . . . . .120
$$
These are in an A.P., having first term as 8 and common difference as 8.
Therefore, $$a=8$$
$$
\begin{aligned}
& d=8 \\
& S_{15}=? \\
& S_n=\frac{n}{2}[2 a+(n-1) d] \\
& \Rightarrow S_{15}=\frac{15}{2}[2(8)+(15-1) 8] \\
& \Rightarrow S_{15}=7.5[6+(14)(8)] \\
& \Rightarrow S_{15}=7.5[16+112] \\
& \Rightarrow S_{15}=7.5(128) \\
& \Rightarrow S_{15}=960
\end{aligned}
$$
{A-3-Z}
34. One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting :
(i) A face card
(ii) A spade
View Answer
ANSWER:(i) a face card
total number of face cards $$=12$$
prbability= $$\frac{12}{52}$$
(ii) a spade.
favourable outcome = 13
prbability=13/52 = $$\frac{1}{4}$$
EXPLANATION:(i) a king of red suit
favourable outcome $$=2$$
prbability=2/52 = $$\frac{1}{26}$$
(ii) a face card
total number of face cards $$=12$$
prbability= $$\frac{12}{52}$$
(iii) a red face card
favourable outcome $$=6$$
prbability $$=6 / 52=\frac{3}{26}$$
(iv) a queen of black suit
favourable outcome $$=2$$
prbability=2/52= $$\frac{1}{26}$$
(v) a jack of hearts
favourable outcome = 1
prbability=1/52
(vi) a spade.
favourable outcome = 13
prbability=13/52 = $$\frac{1}{4}$$
Section-D. 4.marks X 6 Q = 24
35. A train travels a distance of 480 km at a uniform speed. If the speed had been $$8 \mathrm{~km} / \mathrm{h}$$ less, then it would have taken 3 hours more to cover the same distance. Find the speed of the train.
View Answer
ANSWER:
EXPLANATION:Let speed of train be $$\times \mathrm{km} / \mathrm{hour}$$.
By formula,
$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}
$$
Given,
If the speed had been $$8 \mathrm{~km} / \mathrm{h}$$ less, then it would have taken 3 hours more to cover the same distance.
$$
\begin{aligned}
& \frac{480}{x-8}-\frac{480}{x}=3 \\
& \Rightarrow \frac{480 x-480(x-8)}{x(x-8)}=3 \\
& \Rightarrow \frac{480 x-480 x+3840}{x^2-8 x}=3 \\
& \Rightarrow 3840=3\left(x^2-8 x\right) \\
& \Rightarrow 3 x^2-24 x=3840 \\
& \Rightarrow 3\left(x^2-8 x\right)=3840 \\
& \Rightarrow x^2-8 x=\frac{3840}{3} \\
& \Rightarrow x^2-8 x=1280 \\
& \Rightarrow x^2-8 x-1280=0
\end{aligned}
$$
Hence, the required equation is $$x^2-8 x-$$ $$1280=0$$.
$$
x^2-8 x-1280=0
$$
Solving for $$x$$ by factorization method, we get,
$$
\begin{aligned}
& x^2-40 x+32 x-1280=0 \\
& x(x-40)+32(x-40)=0 \\
& (x-40)(x+32)=0 \\
& x-40=0 \text { or } x+32=0 \\
& x=40 \text { or } x=-32
\end{aligned}
$$
Speed cannot be negative. Therefore, the value of $$x$$ is $$40 \mathrm{~km} / \mathrm{hr}$$.
The original speed of the train is $$40 \mathrm{~km} / \mathrm{hr}$$.
Or
Find the value of K so that the quadratic equation $$\mathrm{Kx}(x-2)+6=0$$ has equal roots.
View Answer
ANSWER:
EXPLANATION:The given quadratic equation is $$\mathrm{k} x(\mathrm{x}-2)+6=0$$.
This equation can be rewritten as $$\mathrm{kx}^2-2 \mathrm{kx}+6=0$$.
For equal roots, it discriminate, $$D=0$$.
$$b^2-4 a c=0$$, where $$a=k, b=-2 k$$ and $$c=6$$
$$
\begin{aligned}
& 4 k^2-24 k=0 \\
& 4 k(k-6)=0 \\
& k=0 \text { or } k=6
\end{aligned}
$$
But $$k$$ cannot be 0 , so the value of $$k$$ is 6 .
$$10^{\text {th ARM(SZ)JKUT2024-1003-Z }}$$
A-3-Z
36 . A solid iron pole consists of a cylinder of height 220 cm and base diameter 24 cm . which is surmounted by another cylinder of height 60 cm and radius 8 cm . Find the mass of the pole, given that $$1 \mathrm{~cm}^{3}$$ of iron has approximately 8 g mass. (Use $$\pi=3.14$$ )
View Answer
ANSWER:
EXPLANATION:Radius of bigger cylinder $$=12 \mathrm{~cm}$$, height of bigger cylinder $$=220 \mathrm{~cm}$$
Radius of smaller cylinder $$=8 \mathrm{~cm}$$, height of smaller cylinder $$=60 \mathrm{~cm}$$
Volume of bigger cylinder
$$
\begin{aligned}
& =\pi r^2 \mathrm{~h} \\
& =\pi \times 12^2 \times 220 \\
& =31680 \pi \mathrm{~cm}^3
\end{aligned}
$$
Volume of smaller cylinder
$$
\begin{aligned}
& =\pi r^2 \mathrm{~h} \\
& =\pi \times 8^2 \times 60 \\
& =3840 \pi \mathrm{~cm}^3 \\
& \text { Total volume } \\
& =31680 \pi+3840 \pi \\
& =35520 \pi \mathrm{~cm}^3
\end{aligned}
$$
$$
\begin{aligned}
& \text { Mass }=\text { Density } \times \text { Volume } \\
& =8 \times 35520 \pi \\
& =892262.4 \mathrm{gm}(1000 \mathrm{gm}=1 \mathrm{~kg}) \\
& =892.3 \mathrm{~kg}
\end{aligned}
$$
{Or}
From a solid cylinder whose height is 2.4 cm and diameter 1.4 cm .
a conical cavity of the same height and same diameter is hollowed out. Find the total surface area of the remaining solid to the nearest $$\mathrm{cm}^{2}$$.
View Answer
ANSWER:
EXPLANATION:Given,
1. Diameter of cylinder = Diameter of cone i.e. $$2 r=1.4 \mathrm{~cm}$$
2. Height of cylinder $$=$$ Height of cone i.e. $$h=2.4 \mathrm{~cm}$$
Let $$l$$ be the slant height of the cone.
From the figure,
$$
\begin{aligned}
l^2= & h^2+r^2 \\
& =(2.4)^2+(0.7)^2 \\
\Rightarrow l & =\sqrt{5.76+0.49} \\
& =\sqrt{6.25} \\
\Rightarrow l & =2.5 \mathrm{~cm}
\end{aligned}
$$
Step 2: Solve for curved surface area of cone
Curved surface area of cone $$=\pi r l$$
$$
\begin{aligned}
& =\frac{22}{7} \times 0.7 \times 2.5 \\
& =5.5 \mathrm{~cm}^2
\end{aligned}
$$
Step 3: Solve for curved surface area of cylinder
Curved surface area of cylinder $$=2 \pi r h$$
$$
\begin{aligned}
& =2 \times \frac{22}{7} \times 0.7 \times 2.4 \\
& =10.56 \mathrm{~cm}^2
\end{aligned}
$$
Step 4: Solve for area of circular base of cylinder
Area of circular base $$=\pi r^2$$
$$
=\frac{22}{7} \times(0.7)^2=1.54 \mathrm{~cm}^2
$$
Step 5: Solve for Total surface area of remaining solid
Total surface area of the remaining solid $$=$$ Curved surface area of cylinder + area of circular base of cylinder + curved surface area of cone
$$
\begin{aligned}
& =10.56+1.54+5.5 \\
& =17.6 \mathrm{~cm}^2 \\
& \quad \approx 18 \mathrm{~cm}^2
\end{aligned}
$$
Hence, total surface area of remaining solid is $$18 \mathrm{~cm}^2$$
37. From the top of a 7 m high building, the angle of elevation of the top of a cable tower is $$60^{\circ}$$ and the angle of depression of its foot is $$45^{\circ}$$. Determine the height of the tower.
View Answer
ANSWER:
EXPLANATION:Let $$A B$$ be the building of height 7 m and EC be the height of tower.
A is the point from where elevation of tower is $$60^{\circ}$$ and the angle of depression of its foot is $$45^{\circ}$$.
$$
E C=D E+C D
$$
Also, $$C D=A B=7 \mathrm{~m}$$ and $$B C=A D$$
According to question,
In right $$\triangle \mathrm{ABC}$$,
$$\tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{BC}}$$
$$
\begin{aligned}
& \Rightarrow 1=\frac{7}{B C} \\
& \Rightarrow B C=7 m=A D
\end{aligned}
$$
Also,
In right $$\triangle \mathrm{ADE}$$,
$$\tan 60^{\circ}=\frac{\mathrm{DE}}{\mathrm{AD}}$$
$$\Rightarrow \sqrt{3}=\frac{D E}{7}$$
$$\Rightarrow D E=7 \sqrt{3} \mathrm{~m}$$
Height of the tower =EC = DE $$+C D$$
$$
=(7 \sqrt{3}+7) m=7(\sqrt{3}+1) m
$$
38. Evaluate :
$$
\begin{gathered}
\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}} \\
\end{gathered}
$$
View Answer
ANSWER:
EXPLANATION:$$\begin{aligned} & \frac{5 \cos ^2 60^{\circ}+4 \sec ^2 30^{\circ}-\tan ^2 45^{\circ}}{\sin ^2 30^{\circ}+\cos ^2 30^{\circ}} \\ = & \frac{5\left(\frac{1}{2}\right)^2+4\left(\frac{2}{\sqrt{3}}\right)^2-(1)^2}{\left(\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2} \\ = & \frac{\frac{5}{4}+\frac{16}{3}-1}{\frac{1}{4}+\frac{3}{4}} \\ = & \frac{\frac{1}{12}(15+64-12)}{\frac{1+3}{4}} \\ = & \frac{\frac{1}{12} \times 67}{\frac{4}{4}} \\ = & \frac{67}{12}\end{aligned}$$
OR
Prove the identity :
$$
\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta
$$
View Answer
ANSWER:
EXPLANATION:$$\begin{aligned} & \frac{\sin \theta-2 \sin ^3 \theta}{2 \cos ^3 \theta-\cos \theta} \\ & =\frac{\sin \theta\left(1-2 \sin ^2 \theta\right)}{\cos \theta\left(2 \cos ^2 \theta-1\right)} \\ & =\frac{\tan \theta\left(\sin ^2 \theta+\cos ^2 \theta-2 \sin ^2 \theta\right)}{\left(2 \cos ^2 \theta-\sin ^2 \theta-\cos ^2 \theta\right)} \\ & =\frac{\tan \theta\left(\cos ^2 \theta-\sin ^2 \theta\right)}{\left(\cos ^2 \theta-\sin ^2 \theta\right)} \\ & =\tan \theta\end{aligned}$$
39. If a line intersects sides AB and AC of a $$\triangle \mathrm{ABC}$$ at D and E respectively and is parallel to BC , prove that :
$$
\frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AE}}{\mathrm{AC}}
$$
View Answer
ANSWER:
EXPLANATION:$$D E \| B C$$ (Given)
So, $$\frac{A D}{D B}=\frac{A E}{E C}[$$ Basic proportanality theorem $$]$$
$$
\begin{aligned}
& \frac{D B}{A D}=\frac{E C}{A E}[\text { Taking reciprocal] } \\
& \frac{D B}{A D}+1=\frac{E C}{A E}+1 \text { [Adding } 1 \text { on both sides] } \\
& \Rightarrow \frac{A B}{A D}=\frac{A C}{A E} \\
& \Rightarrow \frac{A D}{A B}=\frac{A E}{A C}
\end{aligned}
$$
{Or}
A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.
View Answer
ANSWER:
EXPLANATION:Length of the vertical pole $$=6 \mathrm{~m}$$ (Given)
Length of the shadow of the pole $$=4 \mathrm{~m}$$ (Given)
Let Height of tower = h m
Length of shadow of the tower $$=28 \mathrm{~m}$$ (Given)
In $$\triangle A B C$$ and $$\triangle D E F$$,
$$
\begin{aligned}
& \angle C=\angle E(\text { angular elevation }) \\
& \angle B=\angle F=90^{\circ}
\end{aligned}
$$
$$\triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}$$ (By AAA similarity criterion)
$$\frac{A B}{D F}=\frac{B C}{E F}$$ (If two triangles are similar then their corresponding sides are proportional.)
$$
\begin{aligned}
& \frac{6}{h}=\frac{4}{28} \\
& \Rightarrow h=6 \times \frac{28}{4} \\
& \Rightarrow h=6 \times 7 \\
& \Rightarrow h=42 \mathrm{~m}
\end{aligned}
$$
Hence, the height of the tower is 42 m .
40. If the median of the distribution given below is 28.5 , find the value of $$x$$ and $$y$$ :
Class Interval Frequency
0-10 ……. 5
10-20 …… $$x$$
20-30 ….. .20
30-40 ….. .15
40-50……..$$y$$
50-60 ……. 5
Total……….. 60
View Answer
ANSWER:B
EXPLANATION:From the table, it can be observed that $$n=60$$
$$
\begin{aligned}
& 45+x+y=60 \\
& x+y=15
\end{aligned}
$$
Median of the data is given as 28.5 which lies in interval 20 – 30.
Therefore, median class $$=20-30$$
Lower limit ( 1 ) of median class $$=20$$
Cumulative frequency ( $$c f$$ ) of class preceding the median class $$=5+x$$
Frequency ( $$f$$ ) of median class $$=20$$
Class size $$(h)=10$$
Median $$=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$$
$$28.5=20+\left[\frac{\frac{60}{2}-(5+x)}{20}\right] \times 10$$
$$
\begin{aligned}
& 8.5=\left(\frac{25-x}{2}\right) \\
& 17=25-x \\
& x=8
\end{aligned}
$$
From equation (1),
$$
\begin{aligned}
& 8+y=15 \\
& y=7
\end{aligned}
$$
Hence, the values of $$x$$ and $$y$$ are 8 and 7 respectively.