$$>2 \sin A \cdot \cos B=\sin (A+B)+\sin (A-B)$$
$$>2 \cos A \cdot \sin B=\sin (A+B)-\sin (A-B)$$
$$>2 \cos A \cdot \cos B=\cos (A+B)+\cos (A-B)$$
$$>-2 \sin A \cdot \sin B=\cos (A+B)-\cos (A-B)$$
$$>\sin (A+B) \cdot \sin (A-B)=\sin ^2 A-\sin ^2 B$$
$$>\cos (A+B) \cdot \cos (A-B)=\cos ^2 A-\sin ^2 B$$
$$>\sin 2 x=2 \sin x \cdot \cos x=\frac{2 \tan x}{1+\tan ^2 x}$$
$$>\cos 2 x=\cos ^2 x-\sin ^2 x=2 \cos ^2 x-1$$
$$>=1-2 \sin ^2 x=\frac{1-\tan ^2 x}{1+\tan ^2 x}$$
$$>\tan 2 x=\frac{2 \tan x}{1-\tan ^2 x}$$
$$>\sin 3 x=3 \sin x-4 \sin ^3 x$$
$$>\cos 3 x=4 \cos ^3 x-3 \cos x$$
$$>\tan 3 x=\frac{3 \tan x-\tan ^3 x}{1-3 \tan ^2 x}$$
$$>\sin ^2 \theta+\cos ^2 \theta=1$$
$$>\sec ^2 \theta-\tan ^2 \theta=1$$
$$>\csc ^2 \theta-\cot ^2 \theta=1$$
$$>1+\cos 2 x=2 \cos ^2 x$$
$$>1-\cos 2 x=2 \sin ^2 x$$
$$>\tan x=\frac{1-\cos 2 x}{\sin 2 x}$$
Note: CSC means cosec