view Answer
Epcot is a theme park at Walt Disney World Resort featuring exciting attractions, international pavilions, award-winning fireworks and seasonal special events.
QUESTION
ANSWER
attachment_id
(required): ID of the media file in WordPressviewer_width
(optional): width of the viewer (default: 100%)viewer_height
(optional): height of the viewer (default: 800px)fullscreen
(optional): true/false, displays fullscreen link above viewer (default: true)fullscreen_text
(optional): text, change the fullscreen link text (default: View Fullscreen)- Spaces not allowed. Use
%20
in place of spaces.
- Spaces not allowed. Use
fullscreen_target
(optional): true/false, open the fullscreen link in a new tabdownload
(optional): true/false, enables or disables download button (default: true)print
(optional): true/false, enables or disables print button (default: true)- \begin{aligned}
& 2 \sin A \cdot \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \cdot \sin B=\sin (A+B)-\sin (A-B) \\
& 2 \cos A \cdot \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \cdot \sin B=\cos (A-B)-\cos (A+B)
\end{aligned
\sin (A+B)=\sin A \cos B+\cos A \sin B$
\item $\sin (A-B)=\sin A \cos B-\cos A \sin B$
\item $\cos (A+B)=\cos A \cos B-\sin A \sin B$
\item $\cos (A-B)=\cos A \cos B+\sin A \sin B$\\
$-\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}$\\
$-\tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}$\\
$-\cot (A+B)=\frac{\cot B \cot A-1}{\cot B+\cot A}$\\
$-\cot (A-B)=\frac{\cot B \cot A+1}{\cot B-\cot A}$\\
$-\sin 2 A=2 \sin A \cos A=\frac{2 \tan A}{1+\tan ^{2} A}$\\
$-\cos 2 A=\cos ^{2} A-\sin ^{2} A=\frac{1-\tan ^{2} A}{1+\tan ^{2} A}$\\
$=1-2 \sin ^{2} A=2 \cos ^{2} A-1$\\
$-\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}$\\
$-\cot 2 A=\frac{\cot ^{2} A-1}{2 \cot A}$
\item $\sin 3 A=3 \sin A-4 \sin ^{3} A$
\item $\cos 3 A=4 \cos ^{3} A-3 \cos A$\\
$-\tan 3 A=\frac{3 \tan A-\tan ^{3} A}{1-3 \tan ^{2} A}$\\
$-\cot 3 A=\frac{\cot ^{3} A-3 \cot A}{3 \cot ^{2} A-1}$
\item $\sin C+\sin D=2 \sin \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$
\item $\sin C-\sin D=2 \cos \left(\frac{C+D}{2}\right) \cdot \sin \left(\frac{C-D}{2}\right)$
\item $\cos C+\cos D=2 \cos \left(\frac{C+D}{2}\right) \cdot \cos \left(\frac{C-D}{2}\right)$
\item $\cos C-\cos D=-2 \sin \left(\frac{C+D}{2}\right) \cdot \sin \left(\frac{C-D}{2}\right)$
\end{itemize}
\end{document}[/latex]